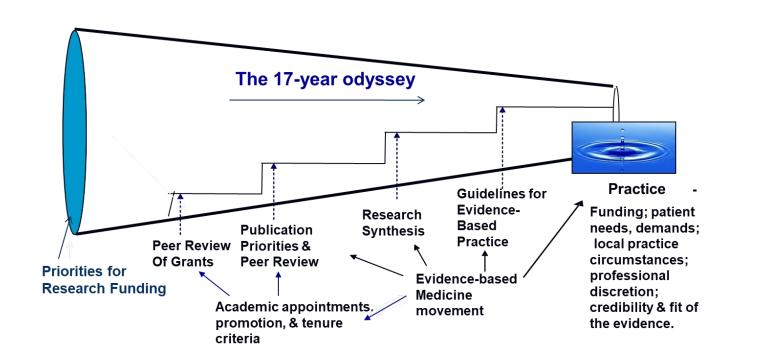
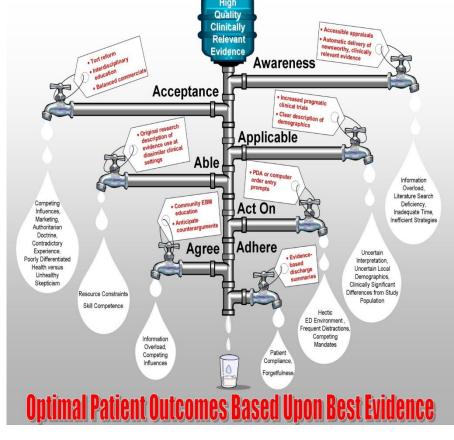
<u>Designing for Accelerated Translation (DART)</u> of emerging innovations in health


Alex T. Ramsey, Ph.D.


Department of Psychiatry Washington University School of Medicine

March 8, 2022

Washington University in St. Louis School of Medicine

17 years for 14% of research discoveries to be integrated into practice

Balas & Boren. in van Bemmel & McCray, Yearbook of Medical Informatics. 2000

Pathman et al. Med Care. 1996.

Washington University School of Medicine in St. Louis

Things may get worse

- ➤ Healthcare is increasingly multilevel
 - Barriers at the patient, provider, health care system, and policy levels
- > Healthcare is increasingly burdened
 - Pragmatic research on chopping block if not aligned with real-world problems and routine workflows

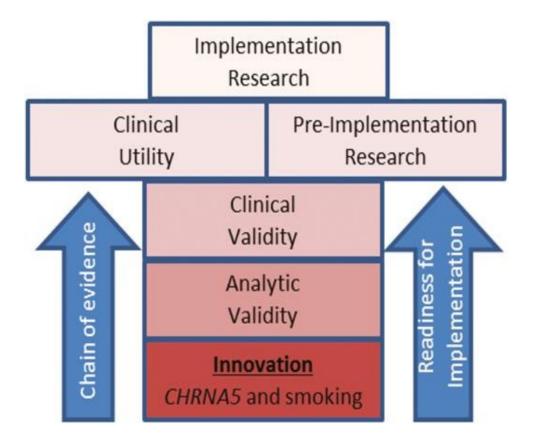
Things may get better

- > Rapid Cycle Research momentum toward timely, contextually-informed innovation (recent NCI workshop, etc)
- > Rapid iterative processes to address pragmatic problems, resulting in "better care faster" (Johnson et al., 2015)
- "...implementation cannot be left as a post hoc procedure." (Mohr, Riper, Schueller. JAMA Psychiatry 2018)

Washington University School of Medicine in St. Louis

"What is the minimum level of evidence needed for implementation?"

"When can we begin acting on the evidence, even as it rapidly evolves?"



"These are the questions we're asking in our mHealth and genomics work!"

"How can implementation science inform this work at an earlier stage?" "Lots to unpack here – let's write a paper"

Washington University School of Medicine in St. Louis

Merging implementation science with biomarker research

- When is a genomic biomarker ready for implementation?
 - \rightarrow Examine the chain of evidence (CDC, 2009)

Analytic validity – Reliability of biomarker test Clinical validity – Strength of association Clinical utility – improve care, health behavior, perceived benefit

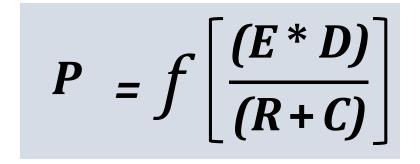
- <u>Typical Approach</u>: Demonstrate utility, then consider implementation issues
- <u>Proposed Approach</u>: Assess implementation context *alongside* clinical utility

Ramsey, A. T., Chen, L. S., Hartz, S. M., Saccone, N. L., Fisher, S. L., Proctor, E. K., & Bierut, L. J. (2018). Toward the implementation of genomic applications for smoking cessation and smoking-related diseases. *Translational behavioral medicine*, *8*(1), 7-17.

School of Medicine in St. Louis

What's behind the idea of DART?

Key Premise #1	Translation of evidence to practice is unnecessarily slow.	
Hot-Take #1	D&I research should not be viewed merely as a final step in the translational process.	
Hot-Take #2	Without radically different approaches to accelerating translation, diffusion of evidence to practice will remain slow.	
Key Premise #2	Translation of evidence to practice is a dynamic process.	
Hot-Take #3	Researchers are responsible for considering implementation needs "early and often".	
Hot-Take #4	All health research should aim to address an actual problem or need.	
Hot-Take #5	Much evidence can be acted upon even when uncertainty of effectiveness is moderately high, recognizing that this evidence is evolving and subject to frequent reevaluation.	


Washington University School of Medicine in St. Louis

Is evidence of effectiveness all that matters? What else informs an innovation's readiness for implementation?

<u>Pace</u> of implementation (P) is a function of:

➤ strength of evidence (E) - effectiveness, utility

- demand (D) urgency, existing alternatives, stakeholder pull
- > <u>risk</u> (R) potential clinical harms, risk from *not acting* on available evidence
- > <u>cost</u> (C) financial expense, resource intensiveness, disruptive effects

Journal of Clinical and Translational Science

Implementation, Policy and Community Engagement Special Communication Designing for Accelerated Translation (DART) of emerging innovations in health

Alex T. Ramsey^{1,*}, Enola K. Proctor², David A. Chambers³, Jane M. Garbutt^{4,5}, Sara Malone^{2,4}, William G. Powderly⁵ and Laura J. Bierut¹

School of Medicine in St. Louis

Guide to <u>assessing</u> and <u>accelerating</u> implementation readiness

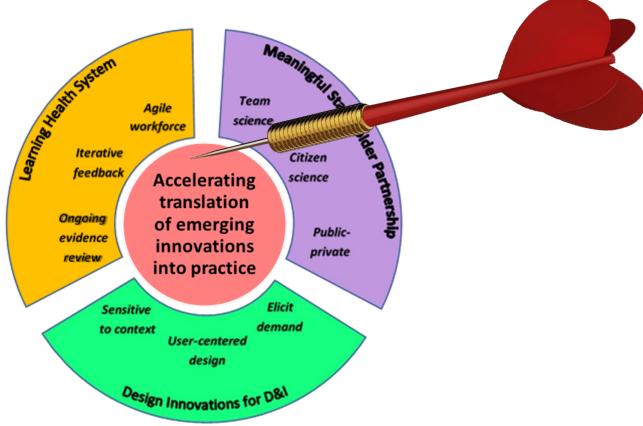
Evidence	Demand	Risk	Cost

Ramsey, A. T., Proctor, E. K., Chambers, D. A., Garbutt, J. M., Malone, S., Powderly, W. G., & Bierut, L. J. (2019). Designing for Accelerated Translation (DART) of emerging innovations in health. *Journal of Clinical and Translational Science*, *3*(2-3), 53-58.

Washington University School of Medicine in St. Louis

Application to a precision medicine innovation: Genetics of smoking (*CHRNA5* variants)

Evidence	Demand	Risk	Cost
Moderate	High	Low	Decreasing
Strong Analytic and Clinical Validity Clinical Utility needed	 > 2 million people genotyped for direct- to-consumer genetic testing > 90% current smokers wanted genetic results to guide smoking cessation 	After receiving genetic results: Never smokers do not start smoking Former smokers do not relapse No increase in anxiety or depression No decision regret	Genome array is < \$200 Sequencing is < \$1000 Single test with durable and broadly-applicable results
Hancock et al 2018 Curr Psychiatry Rep Ramsey et al 2018 Transl Beh Med	Yamamoto et al 2017 J Hum Genet Ramsey et al 2020 Cancer Prev Res	Lipkus et al 2015 Nicotine Tob Res Hartz et al 2015 Genet Med Olfson et al 2016 Nicotine Tob Res	EMR and Genomics (eMERGE) Network Implementing Genomics in Practice (IGNITE) Network


Ramsey, A. T., Proctor, E. K., Chambers, D. A., Garbutt, J. M., Malone, S., Powderly, W. G., & Bierut, L. J. (2019). Designing for Accelerated Translation (DART) of emerging innovations in health. *Journal of Clinical and Translational Science*, *3*(2-3), 53-58.

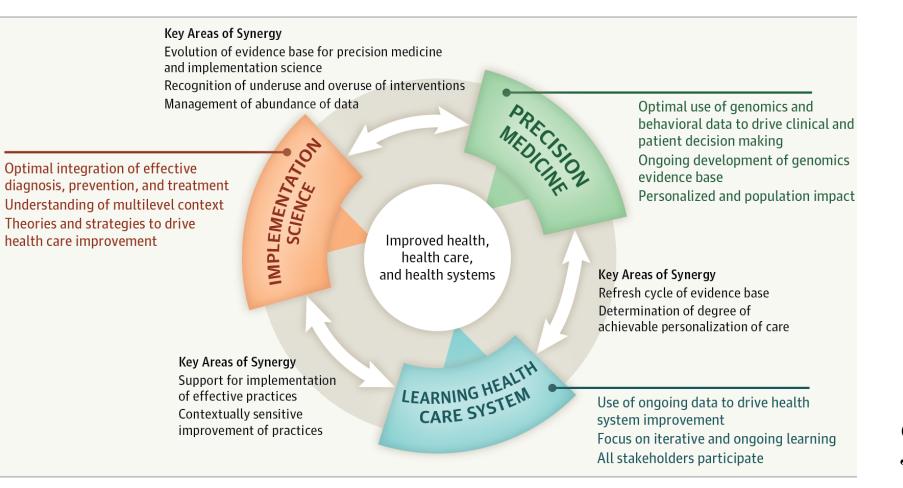
Washington University School of Medicine in St. Louis

Accelerating (or optimizing the pace, if you like) implementation using DART

The **DART** Framework

Designing for Accelerated Translation

Ramsey, A. T., Proctor, E. K., Chambers, D. A., Garbutt, J. M., Malone, S., Powderly, W. G., & Bierut, L. J. (2019). Designing for Accelerated Translation (DART) of emerging innovations in health. Journal of clinical and translational science, 3(2-3), 53-58.


School of Medicine in St. Louis

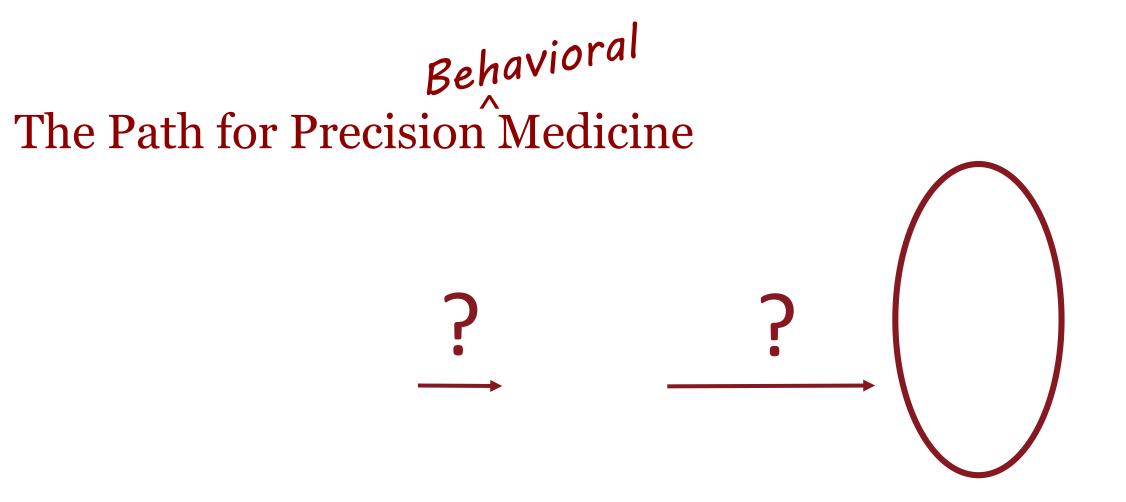
DART strategies to move things further, faster

	Current State: "Where We Are"	Optimal State: "Where We Want to Be"	Implementation or Improvement Strategies: "What It Will Take"
Meaningful	Research siloes	Team science	Develop partnerships early on across translational spectrum
Stakeholder	Restrictive samples	Citizen science	Harness power of public for scientific activities
Partnership	Disconnected from industry	Partnering with industry	Partner with those primed to bring innovations to market
Design	Pushing out innovations	Eliciting / meeting user demand	Understand user motives and context; demonstrate value add
Innovations for	Researcher-driven	Human-centered design	Involve diverse group of end-users throughout development
D&I	Efficacy over effectiveness	Robust, context-sensitive innovations	Better packaging of evidence for translation to practice / policy
Learning	Narrow use of evidence	Ongoing / efficient evidence review	Use existing data, rapid reviews, and Create-Trial-Sustain models
Healthcare	Static delivery systems	Using iterative feedback	Give real-time feedback on key outcomes to providers
System	Resistant to change	Nimble, change-oriented mindset	Train workforce in core concepts that apply across technologies

Washington University School of Medicine in St. Louis

Synergies between implementation science, learning health care systems, and precision medicine

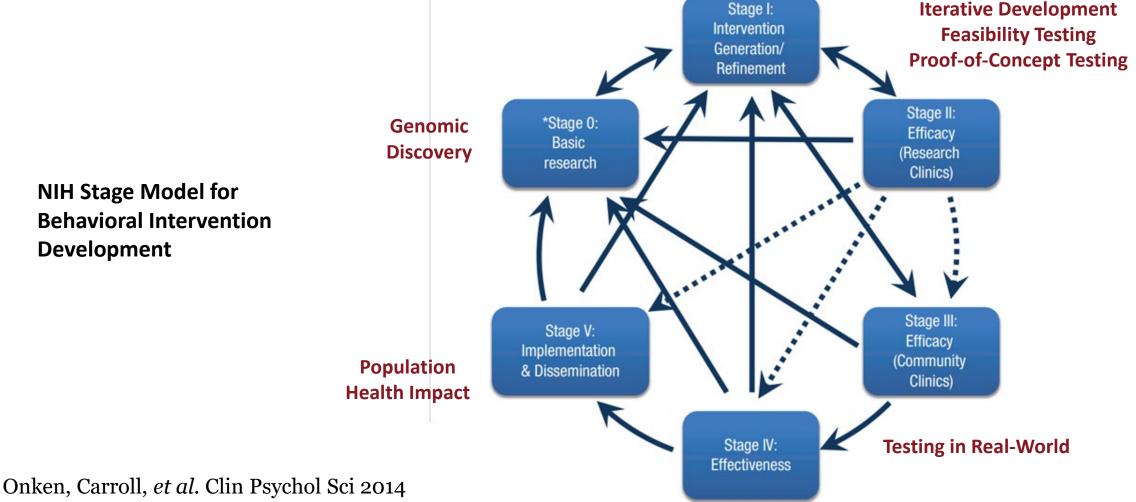
Chambers, Feero, Khoury. *JAMA* 2016


Washington University School of Medicine in St. Louis

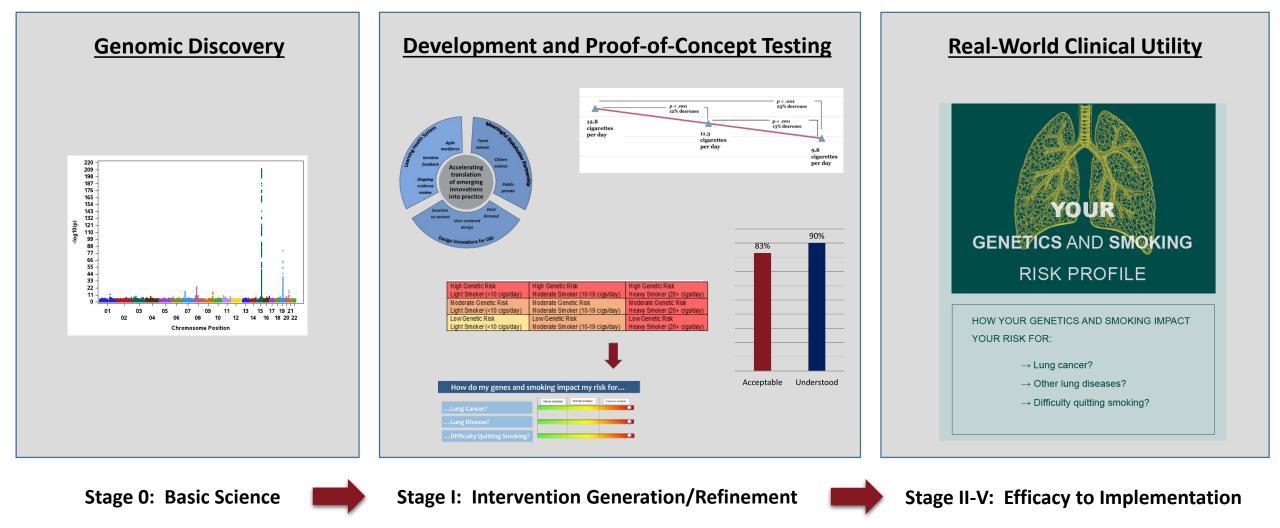
Behavioral The Path for Precision Medicine

E D. Green et al. Nature 2011

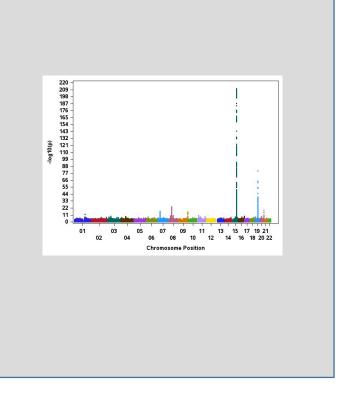
Applying genetics and genomics as tools to optimize behavioral interventions (McCaffery 2019) Using known predictors of behavior, such as genetic predisposition, biology, environment, and past behavior to enhance treatment (Stump et al 2019)


Washington University School of Medicine in St. Louis

Applying genetics and genomics as tools to optimize behavioral interventions (McCaffery 2019) Using known predictors of behavior, such as genetic predisposition, biology, environment, and past behavior to enhance treatment (Stump et al 2019)


Washington University School of Medicine in St. Louis

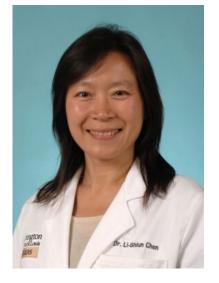
From Genomic Discovery to Genetically-Informed Behavioral Interventions


Washington University School of Medicine in St. Louis

Genetics of Smoking: Bridging the Past, Present, and Future

Washington University School of Medicine in St. Louis

Genetics of Smoking: Bridging the Past, Present, and Future



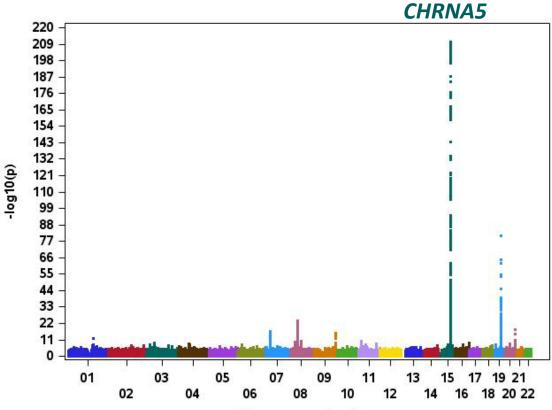
Genomic Discovery

Stage 0: Basic Science

Laura J. Bierut, MD Alumni Endowed Professor of Psychiatry

Li-Shiun Chen, MD, ScD, MPH Associate Professor of Psychiatry

Washington University School of Medicine in St. Louis

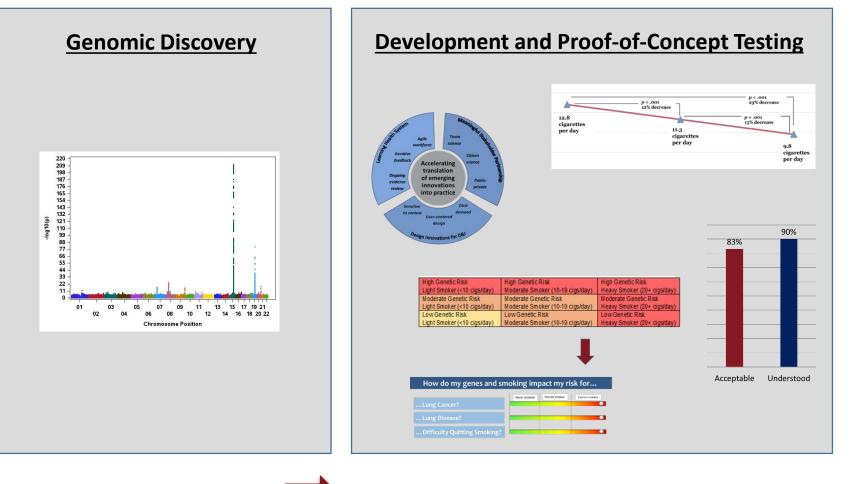

Prognostic significance of CHRNA5 gene region

There is now evidence that variants in and near this gene have prognostic significance for:

- risk of smoking-related diseases
- likelihood of smoking cessation
- response to nicotine replacement therapy

Individuals with high-risk genetic variants:

- > smoke more heavily
- have 2-fold increased risk for lung cancer
- develop lung cancer 4 years earlier
- quit smoking 4 years later
- have lower success with unassisted quit attempts



Chromosome Position

Washington University School of Medicine in St. Louis

Genetics of Smoking: Bridging the Past, Present, and Future

Stage 0: Basic Science

Stage I: Intervention Generation/Refinement

Washington University School of Medicine in St. Louis

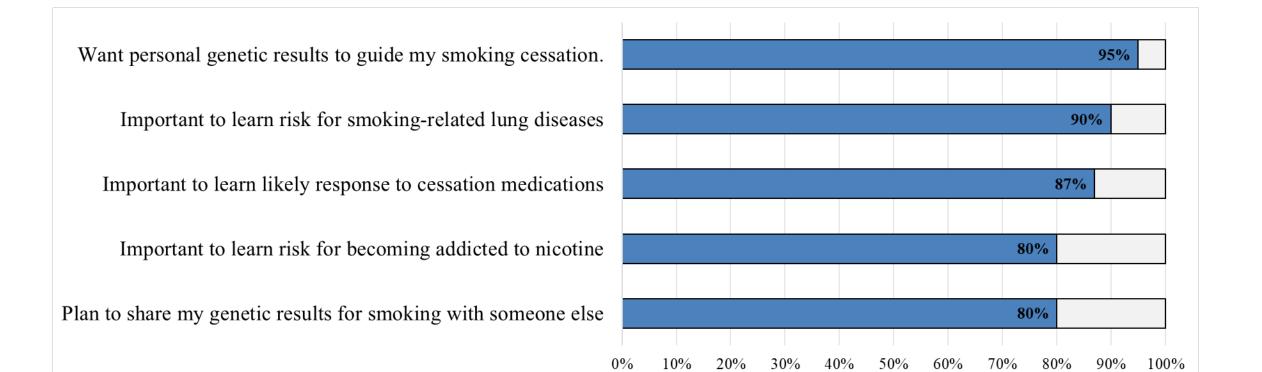
Iterative Design and Development

Participatory Design of a Personalized Genetic Risk Tool to Promote Behavioral Health

Alex T. Ramsey¹, Michael Bray¹, Penina Acayo Laker², Jessica L. Bourdon¹, Amelia Dorsey¹, Maia Zalik¹, Amanda Pietka¹, Patricia Salyer¹, Erika A. Waters³, Li-Shiun Chen¹, and Laura J. Bierut¹

Proof-of-Concept Testing

CANCER PREVENTION RESEARCH

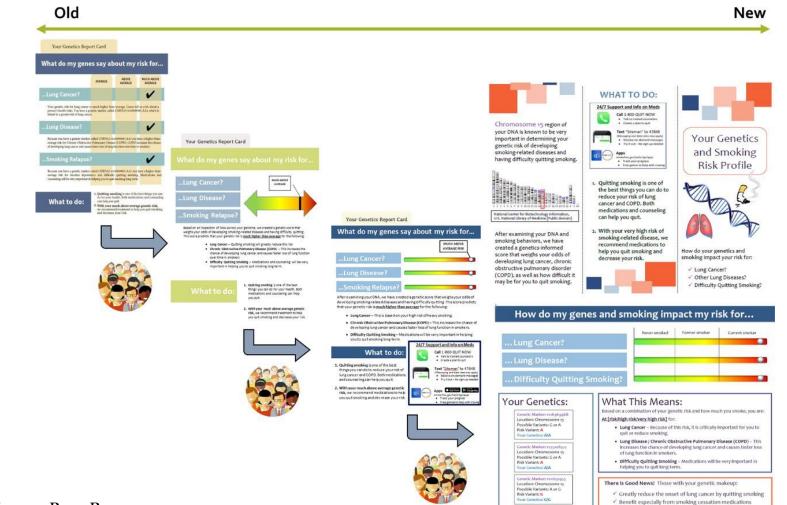

Proof of concept of a personalized genetic risk tool to promote smoking cessation: High acceptability and reduced cigarette smoking

Vex Example: Leven L Houton, Exchanges, Amelia Deniey, Maia Zao, Amanita Pietor, Patiesa Saryer, L'Ation Dren, Tempra, H. Haker, Manack R Manaris, and anotal Bend.

Ramsey, A.T., et al. (2020). Participatory design of a personalized genetic risk tool to promote behavioral health. Cancer Prevention Research, 13(7), 583-592.

Washington University School of Medicine in St. Louis

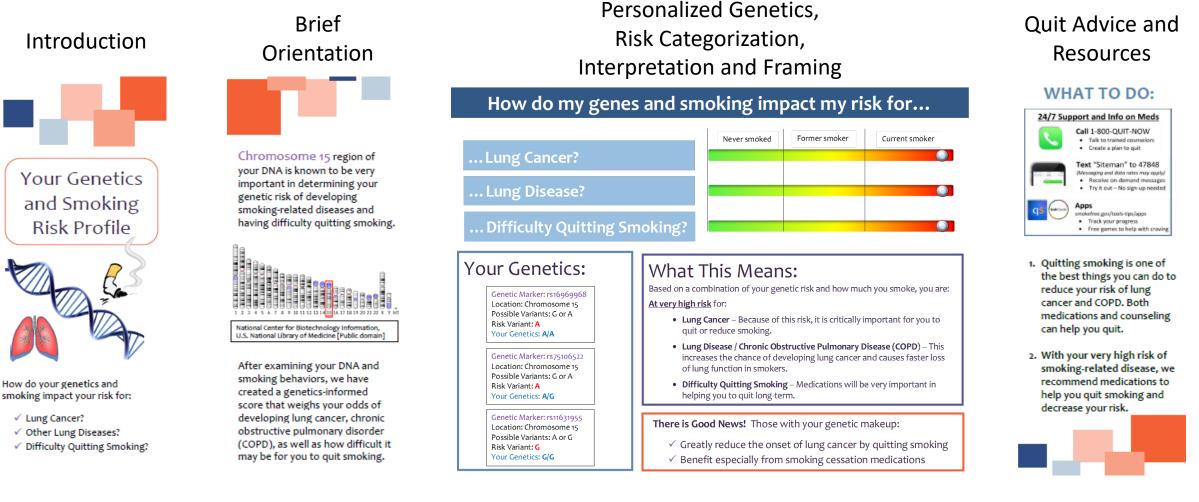
High demand for smoking-related genetics (N=111 participants who smoke)



■ Agree or Strongly Agree □ Neutral or Disagree

Ramsey et al. (2020). Cancer Prev Res.

Washington University School of Medicine in St. Louis


Evolving design toward the "Genetics and Smoking RiskProfile"

Ramsey et al. (2020). *Cancer Prev Res*.

Washington University School of Medicine in St. Louis

Iterative design and prototyping of *RiskProfile*

Ramsey et al. (2020). Cancer Prev Res.

Washington University School of Medicine in St. Louis

Iterative Design and Development

Participatory Design of a Personalized Genetic Risk Tool to Promote Behavioral Health

Alex T. Ramsey¹, Michael Bray¹, Penina Acayo Laker², Jessica L. Bourdon¹, Amelia Dorsey¹, Maia Zalik¹, Amanda Pietka¹, Patricia Salyer¹, Erika A. Waters³, Li-Shiun Chen¹, and Laura J. Bierut¹

Proof-of-Concept Testing

CANCER PREVENTION RESEARCH

Research Article

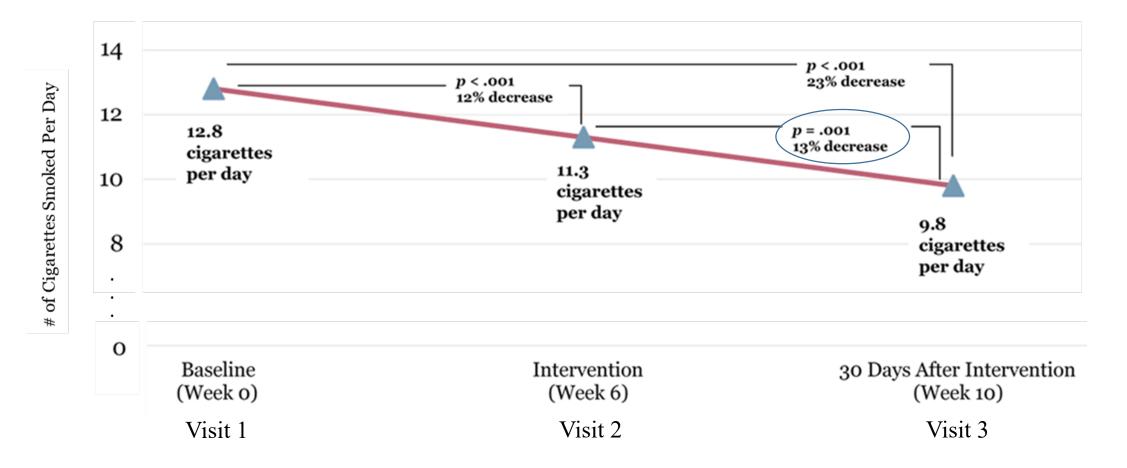
Proof of concept of a personalized genetic risk tool to promote smoking cessation: High acceptability and reduced cigarette smoking

Alex T Ramsey, Jessica L Bourdon, Michael Bray, Amelia Dorsey, Maia Zalik, Amanda Pietka, Patricia Salyer, Li-Shiun Chen, Timothy B Baker, Marcus R Munafo, and Laura J Bierut

Ramsey, A.T., Bourdon, J.L., Bray, M., Dorsey, A., Zalik, M., Pietka, A., Salyer, P., Chen, L-S., Baker, T.B., Munafò, M.R., & Bierut, L.J. (2021). Proof of concept of a personalized genetic risk tool to promote smoking cessation: High acceptability and reduced cigarette smoking. *Cancer Prevention Research*, *14*(2), 253-262.

Washington University School of Medicine in St. Louis

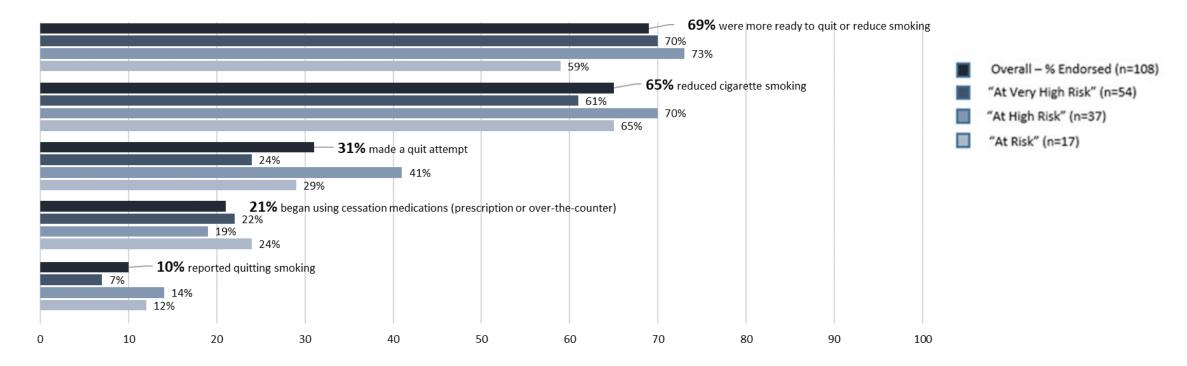
RiskProfile was acceptable and well-understood


- Acceptability of Intervention
 - > 83% of participants rated the intervention as highly acceptable
- Decision Regret
 - > 99% of participants affirmed that they would make the same decision again to receive *RiskProfile*
- Comprehension and Recall of Results
 - > Over 90% at follow-up reported understanding *RiskProfile* moderately to extremely well
- Perceived Intervention Utility
 - > 91% found the tool useful-to-extremely useful overall

N=108 participants who smoke58% White, 34% Black, 7% Other35% High school diploma or less

Ramsey et al. (2021). Cancer Prev Res.

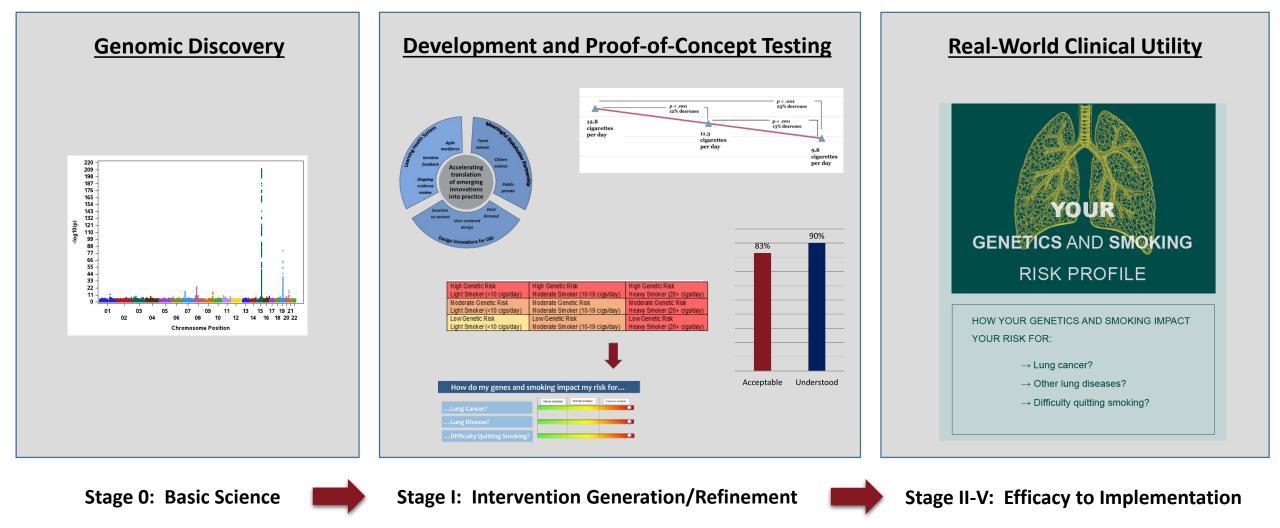
School of Medicine in St. Louis


Reduced smoking after receiving *RiskProfile* (n=108)

Ramsey et al. (2021). Cancer Prev Res.

Washington University School of Medicine in St. Louis

Smoking-related behavior change by *RiskProfile* status (n=108)



No clear differences by risk level

Ramsey et al. (2021). Cancer Prev Res.

Washington University School of Medicine in St. Louis

Genetics of Smoking: Bridging the Past, Present, and Future

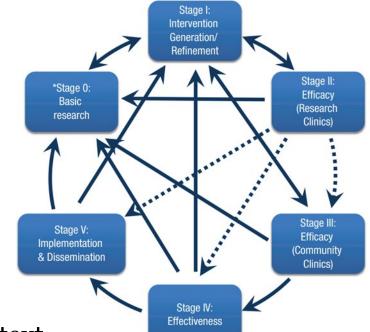
Washington University School of Medicine in St. Louis

Learning simultaneously across the (iterative) research pipeline

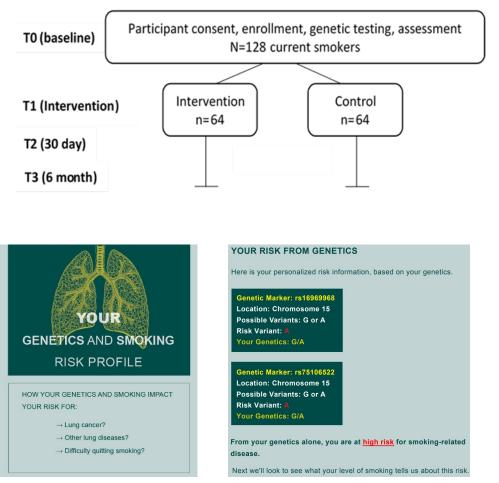
Are genetically-informed interventions for smoking ready to proceed to:

Next stage of innovation development? YES

- Developing/refining polygenic risk scores
- Studying behavior change mechanisms


Clinical trial testing? YES

- ➢ RCT with active control and longer-term follow-up
- Establishing effect sizes


➤ Implementation research? YES

- > Hybrid Type 1 studies: Gather info on implementation context
- Understand multi-level barriers, facilitators, acceptability, feasibility
- > Adapt for telehealth, behavioral health, lung cancer screening, and primary care settings

Fully-Remote Parallel-Group RCT (current NIDA R34)

Control = Brief Cessation Advice Intervention = Brief Advice + *RiskProfile*

YOUR RISK FROM SMOKING

Your genetics don't change, but you CAN reduce your smoking to reduce your risk.

You said that you smoke **<u>20</u>** cigarettes per day.

• This puts you in the <u>Heavy</u> Smoker category.

 From your smoking behaviors alone, you are at very high risk for smoking-related disease.

HOW DO MY GENETICS AND SMOKING IMPACT MY RISK FOR.

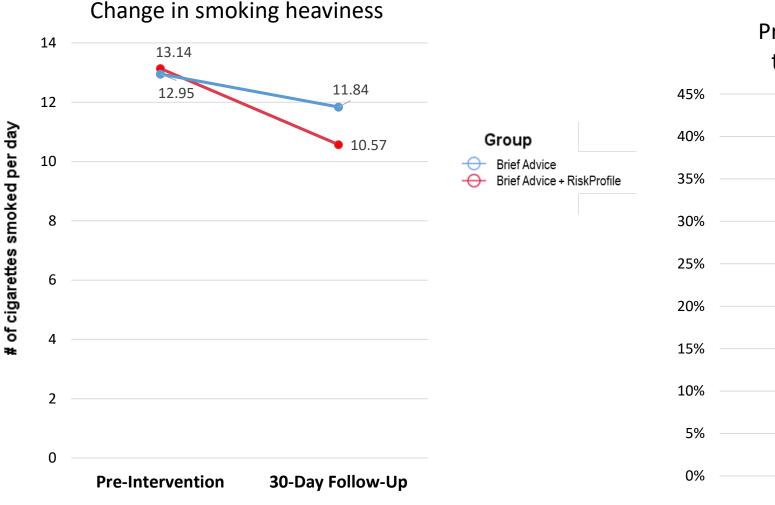
	NEVER SMOKED	FORMER SMOKER	CURRENT SMOKER
Lung Cancer?			0
Lung Disease?			0
Difficulty Quitting Smoking?			\bigcirc

Based on a combination of your genetic risk and how much you smoke, you are at very high risk for:

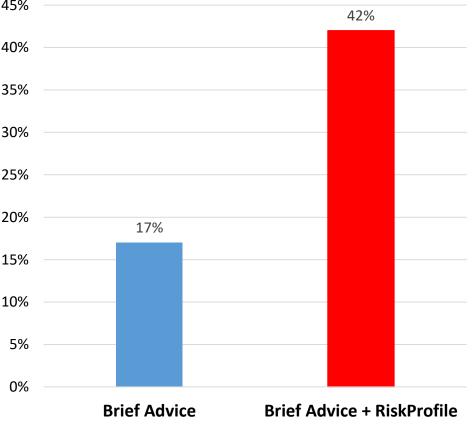
Lung Cancer

· Because of this risk, it is really important for you to quit or reduce smoking

Lung Disease/Chronic Obstructive Pulmonary Disease (COPD)


 This raises the chance of getting lung cancer and causes faster loss of lung function in smokers

Difficulty Quitting Smoking


· Medications will be very important in helping you to quit long-term

Washington University School of Medicine in St. Louis

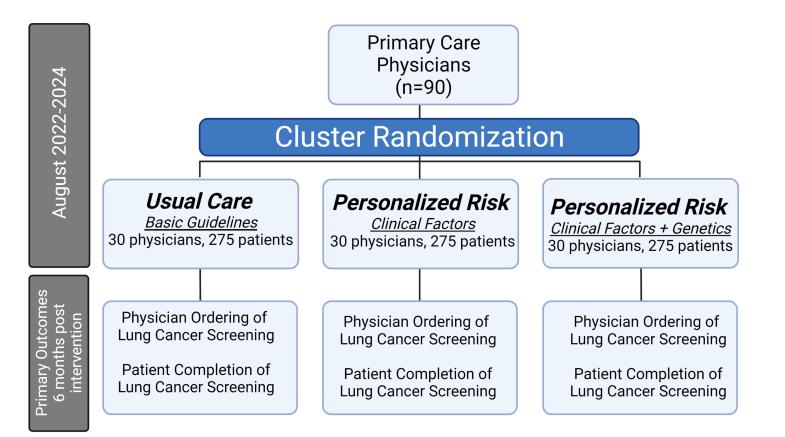
Early results suggest decrease in smoking after *RiskProfile* (n=61)

Proportion seeking medication treatment post-intervention

Washington University School of Medicine in St. Louis

Large-scale cluster RCT in primary care (pending NCI R01)

Aim:


To test the impact of a personalized risk feedback tool on **physician ordering** and *patient receipt* of lung cancer screening and smoking cessation treatment

Goal:

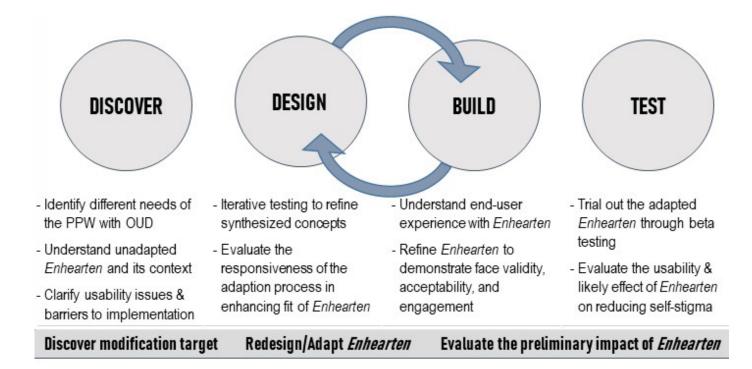
To improve primary and secondary prevention of smoking-related lung cancer

Approach:	Arm 1: Usual Care	Standard of care, brief advice, and guideline awareness	-0-
Comparing 3 Arms	Arm 2: RiskProfile-Clin	Multilevel intervention based on clinical factors only	
	Arm 3: RiskProfile-Gen	Multilevel intervention based on clinical and genetic factors	23andMe

3-arm cluster RCT comparing usual care to multilevel precision health intervention, with and without genetics

Usual Care: Screening and treatment recommendation as usual, with USPSTF guideline awareness

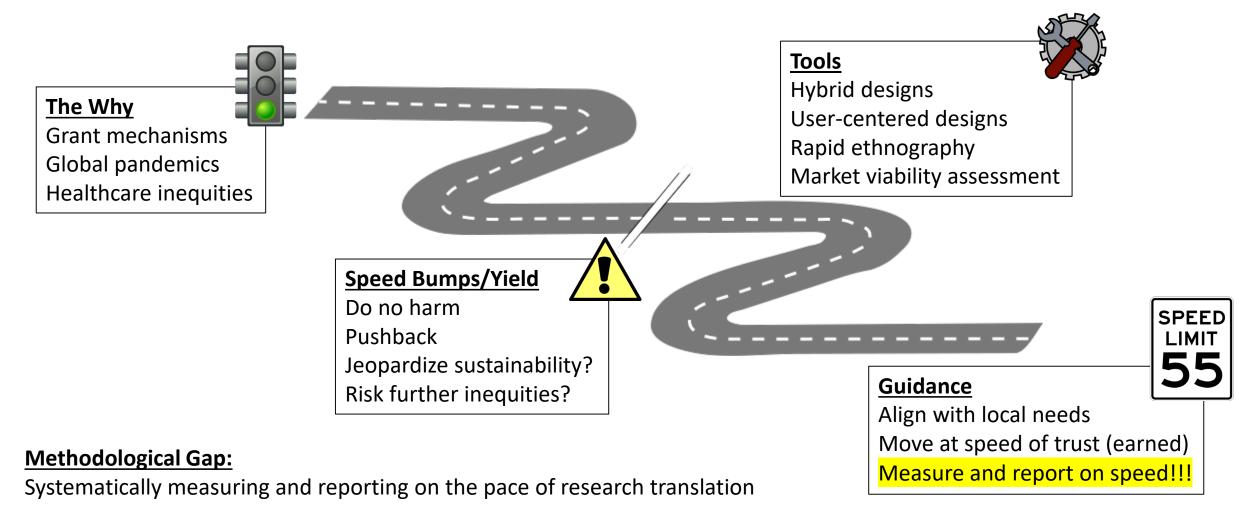
RiskProfile-Clin: Risk feedback based on demographic and clinical factors alone using established PLCOm2012 model


RiskProfile-Gen: Risk feedback based on clinical (PLCOm2012) plus genetic factors (ancestry-specific polygenic risk scores)

Washington University School of Medicine in St. Louis

Digital intervention to reduce self-stigma among pregnant and postpartum women with opioid use disorder (pending NIDA SBIR)

Phase 1 (1 year) Discover, Design/Build, Test (DDBT) Framework



then RCT to test adapted digital intervention

Washington University School of Medicine in St. Louis

Need for Translational Speed (with appropriate guardrails)

Proctor, Ramsey, et al, under review

School of Medicine in St. Louis

and understanding the influences on and impact of implementation speed

Speed... who cares about that?

Stakeholder perspectives and selected priorities on the speed of research translation

Stakeholders	Perspectives and priorities (sample questions)	
Intervention developers, trainers, and purveyors	How long until the innovation is adopted?	
Clinicians	How long will the innovation take to learn? How long to reach competence? When can the innovation be used?	
Clients and patients	How long until the innovation is available? How long until improvement is seen?	
Administrators	How long is the change process? How quickly will new innovation become routine?	
Payers	How long until return on investment?	
Policy makers	How do current or proposed policies affect the speed of research translation?	
Communities	How long until users of the innovation are reached? How long until coverage rates are adequate?	
Advocates	Does rapid research affect health equity? How long until equity is realized?	
Researchers (* <i>Current*</i>)	How long does it take to translate evidence to practice?	
Researchers (* <i>Proposed</i> *)	How long will each stage of research translation take for this innovation? How can we better measure the speed of change? What factors will impact speed? What strategies will enhance speed? How do we increase speed for disadvantaged groups? What effects did speed at both the translational research and applied implementation levels have on overall impact of the innovation?	

Proctor, Ramsey, et al, under review

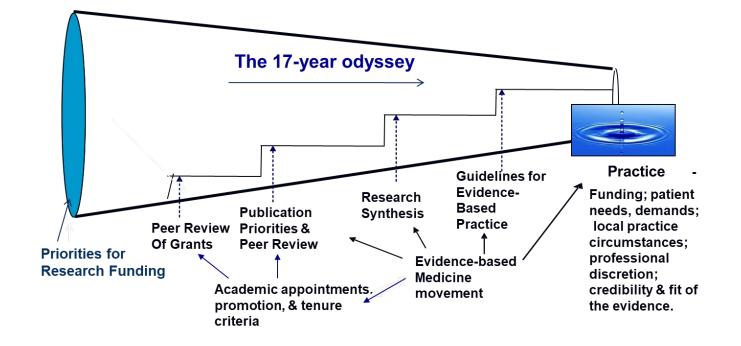
Washington University School of Medicine in St. Louis

Speed... in reference to what?

Potential referents of speed		
Speed of what?	Examples	
Completing phases of the implementation process	Once we complete the readiness planning stage, how soon do we begin hiring and training the staff needed for implementation?	
Attaining implementation outcomes	How quickly can we achieve 50% screening uptake by physicians?	
Achieving service system outcomes	How long will it take for us to increase patient-centeredness reports by 20%?	
Attaining clinical and population-level outcomes	How quickly can society reach herd immunity via vaccine rollout?	

Proctor, Ramsey, et al, under review

Washington University School of Medicine in St. Louis


Speed... how do we measure it?

Measurement of Speed	
Domains for Measuring Speed	Example Metrics
Speed in the Implementation Process	
Time elapsed to achieve predefined implementation milestone	Number of days from starting provider training to first person receiving the intervention
Time elapsed to attain predefined outcome (implementation, service system, clinical outcomes)	Number of months to attain 60% of eligible providers delivering the intervention following clinic adoption
Implementation progress between predefined time periods	Number of implementation steps completed or outcomes attained in 6 months
Rate of progress (or changes in slope) over time or between milestones	% increase in sites adopted in first 6-month period vs. second 6-month period
	Visual depiction (i.e., curve) of % increase in providers engaged 6 months prior to readiness assessment vs. 6 months subsequent to readiness assessment
Pace of iterative development or improvement	Time elapsed (in days) from start to end of 1 st PDSA cycle, 2 nd PDSA cycle
Speed in the Translation of Research	
Time spent within a translational stage (and time saved in subsequent iterations within the translational stage)	Number of months to develop first versus second iterations of intervention
Time to advance from one translational stage to another	Number of months from intervention development to efficacy testing in real-world settings (e.g., from Stage I to Stage III in NIH Stage Model for Behavioral Intervention Development)

Proctor, Ramsey, et al, under review

Washington University School of Medicine in St. Louis

Can we expedite the 17-year odyssey?

Washington University School of Medicine in St. Louis

Framework to Assess Speed of Translation (FAST) Determinants of implementation pace

Accelerators

<u>Innovation factors</u>: Demand<u>/</u>"pull", Evidence strength, Funding, Scalability of innovation <u>Adopter factors</u>: Need/urgency (risk of inaction), Implementation capacity <u>Strategies</u>: Policy mandates, Financing, Partnership building, Designing innovations for D&I

Parameters of Speed

<u>Perspective</u>: speed in reference to "what" or "whom" (intervention components, provider uptake, agency spread, population reach) <u>Endpoints</u>: speed from "when to when" (time from awareness of EBT to decision to adopt, to fidelity, to first patient treated, to scale-up) <u>Determinants and Strategies</u>: "how" speed is built

Pace of Implementation

TT

Rate of Flow Factors

Receptive audiences / end-users Meaningful stakeholder partnerships Industry/Public-private Community engagement Learning health system Iterative cycles to test/adapt Timely/relevant feedback Dynamic adaptation/sustainment

Effects of Speed

Faster attainment of desired outcomes:

- Implementation outcomes
- Service outcomes
- Clinical outcomes
- Population-level outcomes
- Health equity

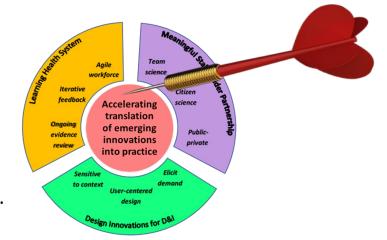
Faster completion of implementation phases Need heightened attention to protect against potential risk of clinical harms or disruption

↑ Relevance of innovation
 ↑ Stakeholder engagement
 ↓ Implementation barriers (secular changes)
 ↓ Time until public health impact

Inhibitors

Innovation factors: Actual risk of harm, Costs Adopter factors: Risk aversion, lack of experience, staff turnover Strategies: Misaligned strategies

Leaks/Inefficiencies


Turnover Lack of: measurement feedback ongoing training fidelity monitoring Misaligned changes in policy/reimbursement

Proctor, Ramsey, et al, under review

Washington University School of Medicine in St. Louis

Key Take-Aways

- \blacktriangleright DART can serve as guide to <u>assess</u> and <u>accelerate</u> implementation readiness.
- > Evaluate and address factors beyond efficacy/effectiveness demand, risk ratio, costs to accelerate.
- > When possible, learn and advance science simultaneously along the translational research pipeline.
- Genomically-informed and technology-based interventions are excellent, multidisciplinary test beds.
- Measure and report on implementation speed an underexplored area.
- > Designing for D&I, meaningful partnerships, and learning health systems can help us go further, faster.

Acknowledgments

Enola Proctor Laura Bierut Li-Shiun Chen Sherri Fisher Tricia Salyer Thue Rammaha Amelia Dorsey Maia Zalik Amanda Pietka Michael Bray Jessica Bourdon Penina Acayo Laker Frika Waters

Timothy Baker Marcus Munafo Jingling Chen Yoonhoo Chang Eric Lenze **Ginger Nicol** Patty Cavazos-Rehg Sarah Hartz Carrie Mintz **Rob** Culverhouse Nancy Saccone Nina Smock Mary Politi

Anne Stilinovic David Gierada Mark McGovern Matthew Kreuter Elvin Geng Ken Freedland Jane Garbutt Sara Malone William Powderly **David Chambers Ross Brownson** Lisa Saldana Thomas Maddox

Research supported by NIDA (K12DA041449 and R34DA052928) and NCI (P50CA244431).

Thank You!

Alex Ramsey, Ph.D. Assistant Professor of Psychiatry Washington University School of Medicine

aramsey@wustl.edu

Washington University School of Medicine in St. Louis